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Abstract

Metal ion is an indispensable factor for the proper folding, structural stability and functioning of RNA molecules. However, it is very
difficult for experimental methods to detect them in RNAs. With the increase of experimentally resolved RNA structures, it becomes
possible to identify the metal ion-binding sites in RNA structures through in-silico methods. Here, we propose an approach called
Metal3DRNA to identify the binding sites of the most common metal ions (Mg2+, Na+ and K+) in RNA structures by using a three-
dimensional convolutional neural network model. The negative samples, screened out based on the analysis for binding surroundings
of metal ions, are more like positive ones than the randomly selected ones, which are beneficial to a powerful predictor construction.
The microenvironments of the spatial distributions of C, O, N and P atoms around a sample are extracted as features. Metal3DRNA
shows a promising prediction power, generally surpassing the state-of-the-art methods FEATURE and MetalionRNA. Finally, utilizing
the visualization method, we inspect the contributions of nucleotide atoms to the classification in several cases, which provides a
visualization that helps to comprehend the model. The method will be helpful for RNA structure prediction and dynamics simulation
study.
Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/Metal3DRNA.
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Introduction
RNA molecules have been found to bear important functions
in a variety of biological processes such as catalysis and cell-
cycle regulation [1]. The function exertions closely rely on RNA
structure and dynamics [2]. As we know, the metal ion is an
indispensable factor for RNA proper folding, structural stability
and functioning [3, 4]. For example, Mg2+ ions can help ribozyme
to achieve a 1011-fold acceleration in the catalytic rate [5]. Thus,
the effective identification of the metal ion-binding sites in RNAs
is very helpful for exploring the mechanisms of RNA folding and
functioning.

There are two kinds of bound ions in RNAs: site-specific bound
(SSB) and nonspecific bound (NSB) ones [6]. The SSB falls into two
categories: partially dehydrated and fully solvated. The former
(site-bound) have direct and strong interactions, and the latter
(diffuse-bound) have relatively weak interactions with RNAs [7].
The NSB ions, often hydrated, form an ion cloud around RNAs [8–
10]. Although X-ray diffraction and nuclear magnetic resonance
spectroscopy can be used to probe SSB ion–RNA interactions, the

detection effectiveness is very limited due to some reasons. For
example, most of the cations are spectroscopically silent [11], and
Mg2+, Na+ and H2O have the same number of electrons. Hence,
many bound cations can be easily mistaken for water molecules
or may be missing from crystal structures. Besides, the experi-
mental methods used for probing SSB ion–RNA interactions are
time-consuming and labor-intensive. Thus, the development of
an effective theoretical method to identify the metal ion-binding
sites in RNAs is urgently needed.

Currently, the studies of the metal ion-binding site predictions
mainly focus on proteins [12], and few on RNAs. The method
called FEATURE [13], originally developed to study the microen-
vironments within proteins, was later in 2003 altered to predict
two types of Mg2+-binding sites in RNAs, i.e. the site- and diffuse-
bound ones [14]. In FEATURE, a total of 112 physicochemical and
structural properties are utilized and the training dataset only
contains 30 site- and 126 diffuse-bound Mg2+ ions involved in
18 RNAs. In 2012, another method called MetalionRNA [15] was
proposed to identify the binding sites by constructing the distance
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and angle-dependent statistical potential in which three types of
metal ion-binding sites (182 Mg2+, 88 Na+ and 123 K+) involved in
50, 25 and 38 RNAs are used as the training dataset, respectively.
Both FEATURE and MetalionRNA are statistics-based methods,
and there is still room for improvement. Now, to the best of our
knowledge, there are no deep learning-based methods available,
although the deep learning-based methods have the advantages
of high accuracy, fast computational speed and automatic feature
extraction. And they have achieved great success in the field
of protein and RNA tertiary structure and function predictions
[16–20].

With the increasing number of experimentally resolved struc-
tures of RNAs, the updating and optimization of artificial intelli-
gence algorithms, and continuous improvement of the computing
power of computer hardware, it becomes possible to establish
deep learning-based methods to identify the metal ion-binding
sites in RNAs. The binding sites of metal ions are highly cor-
related with the local microenvironments in RNAs. The three-
dimensional convolutional neural network (3D-CNN) model, with
a 3D grid representation of a molecular structure as inputs to
extract microenvironments in the structure, has been widely used
in the field of biomolecular structure and function predictions.
Li et al. [21] developed the RNA3D-CNN method to evaluate the
qualities of the predicted RNA structures based on the occupation
number, mass and charge distributions of the atoms. Kozlovskii
et al. [22] proposed the BiteNet method to identify the druggable
binding sites based on the atomic density distribution. These
methods outperform the state-of-the-art methods in their fields
due to the ability of 3D-CNN to automatically mine 3D structural
features. Besides, Lu et al. [23] identified the high-effective mutant
enzyme of polyethylene terephthalate (PET) by using the 3D-CNN
model, which can completely degrade all PET products from 51
consumer uses within 1 week. This further demonstrates the
strong learning ability of 3D-CNN for 3D structural features by
extracting local chemical microenvironments.

In this work, we propose a 3D-CNN-based deep learning
method Metal3DRNA for predicting the binding sites of different
types of metal ions in RNAs, where RNA structure is projected
onto a 3D grid, and the microenvironment around a grid point is
represented as ‘channels’ corresponding to the distributions of C,
O, N and P atoms, respectively. The framework of Metal3DRNA is
shown in Figure 1.

Results
Metal3D-CNN framework
Our Metal3D-CNN model is developed based on the 3D-CNN
framework. The whole pipeline (Figure 1) is composed of two
components: featurization and a 3D-CNN-based model.

During the training phase, a training dataset of RNA structures
containing metal ions is first constructed. The ion-binding sites in
RNAs are treated as positive samples. As the number of positive
samples is too limited to fully exploit the power of deep learning,
we expand the positive samples by perturbing the coordinates of
the original positive samples. Furthermore, the negative samples
are randomly selected with certain rules in RNA structures and
are five times as numerous as the positive samples. In the featur-
ization module, for each sample, a cubic box with a side length
of 20 Å is created, centered on the coordinates of the sample.
Each 20-Å cubic box is then divided into 1.0-Å 3D voxels and C,
O, N and P atoms are recorded in the corresponding atomic type
channels. In the 3D-CNN-based model, a neural network model
with four 3D convolutional layers is built for training. The changes

in the dimension of the feature vectors are 4@203 (input), 32@183,
64@163, 128@63 and 128@43(convolution), 512 (full connection)
and 2 (output), respectively. Finally, a Sigmoid output layer is used
to estimate the ion-binding site probability. Different models are
trained for the three most common types of metal ions (Mg2+, Na+

and K+).
During the testing phase, the metal ion-binding sites are

unknown, so we project each RNA in the test dataset onto a
3D grid with a spacing of 2.5 Å. The grid points are considered
test samples. For each sample, a 20-Å local box is created for
feature extraction using the same procedure as in the training
phase. The trained model gives the probability of each sample
being a binding site. After that, we use the affinity propagation
(AP) clustering algorithm to cluster the samples with a probability
greater than 0.5, and the centers of the clusters are considered to
be the predicted binding sites. More details can be found in the
section of Materials and Methods.

Statistical analyses of training data
To better understand the binding between the metal ions and
RNAs, we made the following statistical analyses. For all the
924 metal ions in the training dataset, we analyzed the type
and the proportion of nucleotide atoms that are closest to the
ions, with the results shown in Figure S1(a). From Figure S1(a),
the most commonly observed atom type is the O atom from a
phosphate group with OP2 more than OP1 which are all negatively
charged and often compensated by the positively charged ions.
The nucleobase atoms that bind more readily with cations are O6,
N7 and O4, followed by O2’ from a sugar moiety and nucleobase
O2. Additionally, atoms N4 and O3’ also have a certain ability
to bind metal ions. Similar observations to the above were also
obtained by Zheng et al. [24].

Based on the results above, for the most preferred OP2 atoms,
we made the statistics on their distances from the closest Mg2+,
Na+ and K+ ions, respectively, with the results shown in Figure
S1(b). From Figure S1(b), it is observed that the distances are
mainly distributed between 1 and 9 Å regardless of the metal ion
types. The range is chosen by us as one of the criteria for screening
negative samples. Besides, from the violin plots, Mg2+ is more
capable of attracting OP2 atoms than K+ and Na+, demonstrating
that Mg2+ is much more effective in charge neutralization than
Na+ and K+.

To detect whether there is a clear difference in the numbers of
C, O, N and P atoms appearing around the positive and negative
samples, we calculated and obtained the distributions of the num-
bers of the atoms in the local 20-Å boxes (microenvironments)
centered on the positive and negative samples, respectively, with
the results displayed in Figure S2. For easy comparison, the results
corresponding to the randomly selected samples are also pre-
sented in Figure S2. From Figure S2, the distributions correspond-
ing to the positive and negative samples are similar to each other
regardless of metal ions types. In Figure S2(a–d), the white dot in
the violin plot represents the median of the data and the black
bar in the center of the violin represents the interquartile range.
As can be observed in the graph, the white dot and black bar of the
negative samples are almost parallel to the corresponding ones of
the positive samples, respectively. In contrast, the white dot and
black bar corresponding to the positives and randomly selected
samples are significantly different. This suggests that compared
to the random samples, the distribution of the numbers of atoms
in our negative sample is closer to that of the positive samples,
which we think will make the trained classifier more significant.
In summary, the difference in binding selectivity to surroundings
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Figure 1. Flowchart of Metal3DRNA. The left panel shows the 3D voxelized structure of a protein (PDB: 1EHZ). The green, red, blue and orange dots
represent C, O, N and P atoms, respectively. And the right panel shows the schematic of the 3D-CNN. The dimensions of the feature vectors are 4@203

(input), 32@183, 64@163, 128@63 and 128@43 (convolution), 512 (full connection) and 2 (output), respectively.

between the metal ions and randomly selected ones allows us
to make the prediction of metal ion-binding sites in RNAs using
the sites’ microenvironments as features. Additionally, the similar
distributions of the numbers of nucleotide atoms around the
positive and negative samples provide us a chance to establish
a more powerful classifier for RNA-metal ion-binding sites.

Analyses of feature contributions
To detect the feature contribution, we compared the two mod-
els trained by four atomic channels and five channels (with
an atomic charge channel added), respectively, through 5-fold
cross-validation, and the results are shown in Figure S3. From
Figure S3, both of them obtain good performances on the three
types of metal ion-binding sites, with the minimum accuracy
(ACC), Matthews correlation coefficient (MCC), and area under
the ROC curve (AUC) of 0.946, 0.808 and 0.967, respectively, for
the five-channel model on Mg2+-binding sites. The models used
to predict Na+-binding sites are ranked best in terms of all the
evaluation metrics, followed by the models used for K+- and
Mg2+-binding site predictions. The two models, generally, have a
similar performance with the four-channel model slightly better
than the five-channel one. Thus, the addition of the atom charge
channel does not bring a better capability to the model, suggesting
that the atom distribution may cover the charge information.
Similarly, in the development of the DOcking decoy selection
with Voxel-based deep neural nEtwork (DOVE) model to evaluate
protein docking decoys, Wang et al. [25] have also found that
the atom distribution information suffices to achieve a good
prediction, not needing to consider other features such as iter-
ative knowledge-based scoring function (ITscore) and general-
ized orientation-dependent, all-atom statistical potential (GOAP)
scores. Thus, the four-channel model is the finalized one we call
Metal3DRNA, where there are three sub-models Metal3DRNA-
Mg/Na/K for predicting Mg2+/Na+/K+-binding sites in RNAs.

To sum up, the 3D-CNN model can automatically extract
the task-specific features from the original atom distribution,
which can effectively be used to predict metal ion-binding sites in
RNAs.

The AP clustering results on the independent
testing set
We tested Metal3DRNA on the independent testing dataset. Here,
for a sample, if the output probability is greater than 0.5, it would
be considered to be a predicted positive sample. However, the
number of samples predicted to be binding sites is often in the
hundreds, which far exceeds the number of ion-binding sites
in the structure. In addition, some predicted sites are at close
distances, forming ion clouds in RNA structure, which means that
quite a few predicted sites indicate the same true binding site.
Therefore, we use the AP clustering algorithm to solve it [26, 27].
In this way, hundreds of metal-binding sites in a structure can
be clustered into dozens of classes. The clustering results for the
structures in the independent test set are shown in Tables S7–S9,
which show that the number of predicted metal-binding sites is
significantly reduced.

Performance of Metal3DRNA on the independent
testing set
We evaluated the prediction performance of Metal3DRNA on
the independent testing set. As a comparison, we also gave the
prediction results from FEATURE and MetalionRNA, but only on
the system 1HC8, as both methods are no longer available and
they were both tested on 1HC8 only. For the test cases, we gave
the success rates of the methods in Top-5, Top-10, Top-20 and
Top-30 predictions (see the section on Performance evaluation
measures).

Case of 1HC8
The prediction performances of Metal3DRNA, MetalionRNA and
FEATURE were compared on the system 1HC8 (with 7 Mg2+ and
1 K+ ions). Table 1 summarizes the predictions for the seven Mg2+-
binding sites. With Metal3DRNA-Mg, 31 sites are predicted as pos-
itive samples, among which the Top-10 (Figure 2) are considered
to be the most likely Mg2+-binding sites, and the others might be
occupied by Mg2+ ions or at a higher concentration of Mg2+ ions.
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Table 1. Success rates from Metal3DRNA-Mg, MetalionRNA and FEATURE on RNA 1HC8 with 7 Mg2+ ions

Rank Metal3DRNA MetalionRNA FEATURE

Top-5 57.1 42.9 28.6
Top-10 85.7 71.4 42.9
Top-20 100 85.7 57.1
Top-30 100 100 57.1

Figure 2. Prediction by Metal3DRNA-Mg on RNA 1HC8 with 7 Mg2+ ions (green balls). The top 10 sites in the prediction ranking list are shown as red (TP)
and black (FP) balls.

The result in Table 1 shows that Metal3DRNA-Mg significantly
outperforms both MetalionRNA and FEATURE in the success rates
in the Top-5, Top-10, Top-20 and Top-30 predictions. Metal3DRNA-
Mg achieves a 100% success rate in Top-20, while the success rates
are 85.7% and 57.1% in Top-20 for MetalionRNA and FEATURE,
respectively. The best ranks of the correctly predicted binding sites
for each binding site are shown in Table S10.

Furthermore, we found some interesting phenomena that the
13th ranked prediction almost overlaps (within 1.0 Å) with a
crystallographic water molecule (with O atom number 2005 in
the Protein Data Bank (PDB) file, see Figure S4), which is maybe
due to a metal ion mistaken for a water molecule. The 5th-ranked
prediction nearly overlaps (within 3.3 Å) with Os cation (with atom
number 1170, see Figure S4), which suggests that the site may
have the ability to bind metal ions.

For the K+ ion, the correct predictions by the three methods
are all ranked in Top-5. It is worth noting that for Metal3DRNA-
K, the predictions ranked 3rd, 8th and 17th are Mg2+-binding
sites; for MetalionRNA, the top three are Mg2+-binding sites; and
for FEATURE (an Mg2+ ion-specific predictor), the K+-binding site
is ranked first. The partial overlaps between the predicted K+-
binding sites with the Mg2+-binding sites suggest that Mg2+ and
K+ ions compete with each other for binding to RNA molecules,
which makes it difficult to accurately predict different types of
metal ion-binding sites simultaneously.

Independent test performance of Metal3DRNA
Five RNA structures containing 22 Mg2+-binding sites (Table S4)
were used to evaluate the performance of Metal3DRNA-Mg, with
the results of success rates shown in Table 2. The success rate

reaches 45% in Top-5 and 86% in Top-20. Figure S5 shows the ranks
and the locations of the correctly predicted Mg2+-binding sites.

Metal3DRNA-K was evaluated on the three RNA structures
with six K+-binding sites (with details in Table S5), with the results
shown in Table 3 and Figure S6. Totally, the model identifies 50%
of binding sites in Top-5 and 83% in Top-30.

Metal3DRNA-Na was evaluated on the two RNA structures
containing four Na+-binding sites (with details in Table S6), with
the results shown in Table 4 and Figure S7. Totally, the model
identifies 50% of binding sites in Top-20.

In conclusion, Metal3DRNA outperforms the other methods on
the independent test set 1HC8, which proves the effectiveness
of the model Metal3DRNA. In addition, the results for Mg2+ ion
prediction are better than those for Na+/K+ ion predictions. On
one hand, the number of Mg2+ in the training set is much larger
than those of Na+ and K+ ions, while large-scale data tend to pro-
duce robust and powerful performance using the deep learning-
based model. On the other hand, Mg2+, with two positive charges,
has a stronger binding force with RNA structure than Na+ and
K+, and the changes in the microenvironment it is in are more
pronounced. Furthermore, the model shows that certain types of
sites are often occupied by other types of ions, which is evidence
of competition between the three types of metal ions in terms of
binding to the RNA structure.

Network visualization analyses
To gain insights into what the 3D-CNN network has learned, the
saliency map [28] was used to understand what atoms are impor-
tant for the sample classification. The importance scores are
calculated as the gradients of the classification score concerning
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Table 2. Success rates from Metal3DRNA-Mg on independent testing set for Mg2+

Rank 1nbs_A 2qbz_X 6wzr_B 7e9e_A 1hc8_C Total

Top-5 20 33.3 100 66.7 57.1 45.4
Top-10 60 66.7 100 66.7 85.7 72.7
Top-20 80 66.7 100 100 100 86.3
Top-30 80 66.7 100 100 100 86.3

Table 3. Success rates from Metal3DRNA-K on independent testing set for K+

Rank 4r4v_A 6up0_B 1hc8_C Total

Top-5 25 100 100 50
Top-10 25 100 100 50
Top-20 25 100 100 50
Top-30 75 100 100 83.3

Table 4. Success rates from Metal3DRNA-Na on independent
testing set for Na+

Rank 6xus_A 6e8s_B Total

Top5 100 0 25
Top10 100 0 25
Top20 100 33.3 50
Top30 100 33.3 50

the local 20-Å box voxels, which are then normalized to the range
of (0,1) and assigned to the corresponding atoms in the box. A
large importance score suggests that the atom plays a key role
in determining the classification of the sample.

Taking the four randomly selected ion sites (correctly pre-
dicted) including Mg2+, Na+ and K+-binding sites, for example, we
calculated their saliency maps, with the results shown in Figure 3.
Figure 3A corresponds to the Mg2+-binding site (1159 ranked 9th)
in 1HC8, and the saliency map indicates that the C4’ and C5’
atoms in U108 nucleobase play a crucial role in determining
the positive classification of the site, A107, A136 and A138 also
make significant contributions to the prediction. Figure 3B shows
the Mg2+-binding site (101 ranked 3rd) in 6WZR, from which the
classification is determined primarily based on nucleotide U16
followed by G17 and A18, with the main contributions from C4
in U6. Figure 3C is for the Na+-binding site (102 ranked 15th) in
6E8S, and it can be observed that the nucleotides A15 and G14 play
a vital role with the most important atoms being C1’, O3 and C1
in A15. Figure 3D corresponds to the K+-binding site (1162 ranked
5th) in 1HC8, from which the critical atoms are C5 and C6 in G124,
C2 in A123, C4 in A111 and C1’ in U115. In summary, for the four
examples, generally, the guanine and adenine nucleotides play an
important role in correctly predicting the ion-binding sites. We
think this phenomenon is likely related to the result we found in
our previous study that G has the highest propensity to participate
in cation–pi interactions due to its most stable interaction energy
with cations [29].

Discussion
Until today, it has been a challenge to predict metal ion-binding
sites in RNA structures. One reason is that there is a lack of exper-
imentally verified metal ion-binding sites in RNAs. Furthermore,

it is unclear as to whether there are missing or mislabeled metal
ions in the known RNA structures [30]. In other words, it is very
hard to verify negative samples in nature, which is the reason why
the reported classifiers did not address the overall sensitivity and
specificity. Finally, there exists competition among different kinds
of cations, which makes it very difficult to predict correctly the
specific ion-binding sites. With the development of the structure
determination techniques and the accompanying increase in the
number of verified metal ions in RNA structures, we believe that
our method can achieve a better prediction by training it on a
large-scale dataset.

As we can see in the Result section, Metal3DRNA shows supe-
rior performance in Top-5, Top-10, Top-20 and Top-30 predictions,
respectively. Metal3DRNA achieves a better Mg2+-binding site
prediction than MetalionRNA and FEATURE on 1HC8, mainly due
to the following reasons:

(1) Metal3DRNA is trained on the 160 RNA crystal structures
involving 709 Mg2+, 110 Na+ and 105 K+ ions by the 3D-CNN
model, while MetalionRNA is constructed only on a repre-
sentative dataset of 113 crystal structures, and for FEATURE,
the number is 18 RNA structures.

(2) MetalionRNA constructs the distance and angle-dependent
statistical potential as features, and FEATURE utilizes a total
of 112 physicochemical and structural properties as inputs.
Metal3DRNA extracts the microenvironments around the
samples from a 3D grid representation of a molecular struc-
ture, which can better characterize the features of positive
and negative samples.

(3) Both MetalionRNA and FEATURE are statistics-based meth-
ods, while Metal3DRNA adopts the advanced deep learning
method (3D-CNN), which allows for a stronger spatial feature
extraction, resulting in generally a better metal ion-binding
site prediction.

In the future, the optimized Metal3DRNA can provide potential
metal ion-binding sites to be used in RNA structure prediction
and molecular dynamics (MD) simulation. As we know, a mistake
or an absence of a cation in RNA structure could cause the
MD simulation to become unstable or even fail. As for structure
prediction, cations can be added to the potential sites in a not
well-predicted RNA structure to explore the possibilities to help
the structure predictors improve the quality of RNA structure
prediction.
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Figure 3. Importance scores (saliency maps) of all the atoms in the local 20-Å boxes centered on the four randomly selected samples, respectively,
including (A) a Mg2+-binding site 1159 ranked 9th in 1HC8, (B) a Mg2+-binding site 101 ranked 3rd in 6WZR, (C) a Na+-binding site 102 ranked 15th in
6E8S and (D) a K+-binding site 1162 ranked 5th in 1HC8. The cations are drawn as spheres whose surrounding structures are drawn as sticks. The atoms
with higher scores are in bold and their color indicates how the atoms contribute to the prediction decisions with red to blue highlighting the most
important to the least important atoms.

Finally, we measured the computational time used to extract
3438 local 20-Å boxes from RNA 1HC8 containing 58 nucleotides
(nt) on a GPU 2080ti, and the time is about 112 s. Predicting
whether a local box is a metal ion-binding site takes about 15 s.
Thus, our method’s computational time is acceptable.

Conclusions
We propose a structure-based approach Metal3DRNA for
predicting the most common Mg2+-, Na+- and K+-binding sites
in RNA structures. The microenvironments around the samples
are extracted as features which are then utilized to train a 3D-
CNN framework via 5-fold cross-validation. The results show
Metal3DRNA can reproduce the experimentally determined
positions of Mg2+, Na+ and K+ in RNA structures with good
accuracy. On the independent test dataset including 32 metal ions
in 10 RNA structures, all the binding sites but six are correctly
identified by Metal3DRNA. Compared with MetalionRNA and
FEATURE on system 1HC8, Metal3DRNA has a more powerful
performance on the Mg2+-binding site identification. This work
provides insights into RNA folding and functions and can be
applied to RNA structure prediction as well as MD study.

Materials and methods
Datasets
We downloaded all the 1528 structures containing only RNA
molecules (January 2021) from PDB [31]. Considering the study
aim, the structures were further filtered, and those meeting the
following criteria were retained: (i) structure resolution better
than 3.0 Å; (ii) containing at least one of the Mg2+, Na+ and
K+ ions; (iii) sequence identity less than 70%; (iv) removing the
cations more than 9.0 Å away from any atom of RNA. Finally,

709 Mg2+, 110 Na+ and 105 K+ ions were retained which are
involved in 103, 26 and 31 RNAs, respectively (see detailed infor-
mation in Tables S1–S3).

For the independent testing dataset, we collected RNA struc-
tures with a resolution <3.5 Å from the PDB (October 2022), and
kept the structures containing at least one of the Mg2+, Na+ and
K+ ions and with the sequence identity less than 70% to each
other. The cations more than 9.0 Å away from any atom of RNAs
were also removed. To avoid the redundancy between the inde-
pendent test dataset and the training dataset, we further screened
the independent test structures based on the sequence identity
<30% and TM-score < 0.3 [32] to the training set. The TM-score
was computed by the US-align structure alignment algorithm [33].
Additionally, to compare Metal3DRNA with FEATURE and Metal-
ionRNA methods (both unavailable now), the 58 nt fragment of
Bacillus stearothermophilus 23S rRNA (PDB code: 1HC8 with 7 Mg2+

and 1 K+ ions) [34], a protein–RNA complex, on which the two
methods have been tested, is also included in the independent
testing set. Finally, the independent test datasets of Mg2+, Na+

and K+ contain 22 Mg2+, 4 Na+ and 6 K+ ions involved in 5, 2 and 3
structures, respectively (see detailed information in Tables S4–S6).

Synthesis of positive samples
As for the definition of positive samples, the ion-binding sites,
represented by grid points in 3D space, are taken as positive
samples. Considering that a large dataset is needed for training
a deep learning model, we expanded the positive samples based
on the original ones by considering the six points apart 1.0 Å from
an original one in six directions along ±x, ±y and ±z as the positive
ones. The augmented samples are given the same positive label.
Thus, the size of the positive samples is increased by six times
through this method.
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Selection of negative samples
The negative samples were generated by randomly choosing the
grid points in RNA structures, which meet the requirements: (i)
more than 5.0 Å away from any metal ion; (ii) 1.0–9.0 Å away
from any OP2 atom. Furthermore, the distribution of the number
of atoms in the negative samples’ microenvironments (cubes of
edge length 20 Å centered at the negative sample grids) is similar
to that corresponding to the metal ions in RNA. Taking Mg2+ for
example, the distribution of the numbers of Mg2+ ions concerning
the numbers of atoms in their microenvironments is shown in
Figure S8. The distribution is concentrated in the interval of 40–
400, which is further divided into sub-intervals at intervals of
20. Corresponding to each sub-interval, the negative samples of
similar microenvironments are screened out, whose number is
five times the number of Mg2+ in the sub-interval. Thus, the total
number of negative samples is five times the number of positive
ones. The reason for such negative sample screening is mainly to
increase the difficulties for the models to discriminate between
positive and negative samples, further enhancing the robustness
of the 3D-CNN model.

Due to the reality that the negative samples are much more
than the positive ones, an unbalanced dataset with the ratio of
positive to negative samples being 1:5 was constructed for estab-
lishing the prediction model to increase its robustness [35]. Thus,
the training datasets of Mg2+/Na+/K+ ions contain 4963/770/735
positive samples and 24 815/3850/3675 negative samples,
respectively. Positive and negative samples are labeled 1 and 0,
respectively.

Feature extraction
The microenvironment around a grid point (sample) is repre-
sented as channels (features), which correspond to the atom
and charge distributions. To obtain the information, a 20-Å box
centered at the sample is constructed. Each 20-Å box is further
divided into 1-Å 3D voxels, in which the occurrences of C, O,
N and P atoms are recorded in four corresponding channels
with the occurrence recorded as 1 otherwise as 0. The fifth
channel records the atomic charge distribution in a similar way,
and the charge parameters are from the amber03 force field
[36]. Thus, the environment around a sample is extracted as
four or five channels, which are then stacked together as input
channels.

3D convolutional neural networks
A 3D convolutional neural network framework is constructed to
predict the ion-binding sites in RNAs. There are four 3D convo-
lutional layers, where the numbers of filters are 32, 64, 128 and
128, and the receptive fields of the filters are all 3 × 3 × 3 voxels.
The convolution stride is set to one voxel. And a max-pooling
layer with a stride of 1 is placed following the two consecutive
convolution layers. Subsequently, one fully connected layer with
512 hidden units is stacked after the convolutional layers. The
final output layer is the probability that the grid point is a metal
ion-binding site. All units in the hidden layers are activated by
the Rectified Linear Unit (ReLU) nonlinear function, while the
output layer is activated by a Sigmoid function. For each type of
metal ion, a corresponding model is trained. The cross-entropy
loss is minimized for the true label and the sampled negative
classes. The training is regularized using a dropout regularization

for every convolutional layer and the fully connected layer with a
dropout ratio of 0.5. The truncated normal distribution is used to
initialize the network weights.

Independent testing
For the independent testing set, the metal ion-binding sites are
unknown and the processing strategy in the training set is not
suitable for the feature extraction. Thus, for each structure in the
independent testing set, an RNA structure is projected onto a 3D
grid with 2.5 Å spacing, and the grid points are just the predicted
samples. For each sample, the four channels are extracted in the
same procedure mentioned in the feature extraction section. The
sample is considered to be positive when its distance from any
metal ion is less than 4.5 Å, otherwise, it is considered to be
negative.

In this way, a structure is represented by thousands of grid
points, each of which is a predicted sample. Here are the pro-
cedures for making predictions on the independent test dataset.
First, predictions are made using the Metal3DRNA model on spe-
cific cases. Then, the predicted binding sites are clustered using
the AP clustering algorithm [26, 27], and the cluster centers are
considered to be the predicted binding sites. Finally, we evaluate
the performance after clustering.

As a comparison, we gave the prediction results from FEATURE
and MetalionRNA, but only on the system 1HC8, as both methods
are no longer available, and they were both tested on 1HC8 only.
For Metal3DRNA, we ranked the clustered results according to
their probabilities of being a positive sample. Then we use Top-
5, Top-10, Top-20, and Top-30 to evaluate the success rate of the
method, as described in the section on Performance evaluation
measures.

Performance evaluation measures
The 3D-CNN model is trained via 5-fold cross-validation on the
training dataset, and the trained model is tested on the indepen-
dent testing dataset. The predictive performance is assessed with
the overall accuracy (ACC), true positive rate (TPR) and MCC that
are defined as follows:

ACC = TP + TN
TP + FP + TN + FN

TPR = TP
TP + FN

MCC = TP × TN − FN × FP√
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

where the true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) are obtained by comparing the predicted
label for each sample with the actual one. Besides, for each model,
the receiver-operating characteristic (ROC) curves are generated,
and the area (AUC) under the ROC curve is then calculated with
AUC = 1 representing a perfect classifier and AUC = 0.5 a random
classifier.

The success rate metric [37, 38] is used to evaluate the perfor-
mance of Metal3D-CNN on the independent testing set, which is
defined as the ratio of the number of correctly predicted binding
sites in Top-N (N = 5, 10, 20 and 30) predictions (according to the
ranking based on the probability of being predicted as a positive
one) to the total number of binding sites in RNA. The correctly
predicted binding site is defined as the site less than 4.5 Å away
from any metal ion-binding site in RNA.
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Key Points

• Metal ion is an indispensable factor for the proper
folding, structural stability and functioning of RNA
molecules. However, it is very difficult for experimental
methods to detect them in RNAs. Here, we propose a
structure-based approach called Metal3DRNA by using
a 3D convolutional neural network model, which can
effectively identify the binding sites of the most common
metal ions (Mg2+, Na+ and K+) in RNA structures.

• The microenvironments of the spatial distributions of
C, O, N and P atoms around a sample are extracted as
features. The negative samples screened out based on
the analysis for binding surroundings of metal ions, are
more like positive ones than the randomly selected ones,
which is beneficial to a powerful predictor construction.
Additionally, utilizing the visualization method, we give
insights into the contributions of nucleotide atoms to the
ion-binding site prediction.

• Metal3DRNA shows a promising prediction power, gen-
erally surpassing the state-of-the-art methods FEATURE
and MetalionRNA. This work helps strengthen the under-
standing of RNA–cation interactions and has a potential
application in RNA structure prediction and dynamics
simulation studies.
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